Automatically Modulating Activation of the Paralyzed Trunk and Hip Muscles to Improve Manual Wheelchair Propulsion

Stephanie Nogan Bailey BSE1, Kevin M. Foglyano BSE2, Lisa M. Lombardo MPT1, Ronald J. Triolo PhD1,2

1 Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland OH, 2 Departments of Orthopaedics & Biomedical Engineering, Case Western Reserve University, Cleveland OH

OBJECTIVE

- During manual wheelchair (MWC) propulsion, the trunk flexes and extends throughout the propulsion cycle [1] to help create mechanical power for movement.
- MWC users with paralysis of core muscles assist/resist excessive forward or backward lean and stabilize the torso with their arms.
- Inefficient propulsion mechanics lead to shoulder problems and difficulty navigating challenging terrains.
- Constant activation of the paralyzed hip/trunk muscles with neural stimulation improves MWC propulsion efficiency on level terrain [2].
- Stimulation stiffens the torso so the arms can more effectively transmit forces and moments to the pushrim.
- Advantages disappear during sprints and up ramps.
- Appropriate timing of stimulation with the propulsion cycle may allow MWC users to better move or directionally stabilize their trunks [Figure 1] to increase efficiency and improve upper extremity mechanics.

DESIGN / METHOD

MWC propulsion consists of 2 main phases: contact when leaning forward with hands on the pushrims and recovery when pulling trunks and arms back to prepare for the next push [Figure 2].

We can detect transition periods between each phase by mapping the sagittal and frontal plane components [Figure 3] (using a custom wrist accelerometer [3]) to the propulsion phases (determined by an instrumented pushrim) [Figure 4].

RESULTS

Pushing with modulated stimulation:

- Rated “very easy” compared to “very difficult” without stimulation (7-point User Ratability Scale).
- Modulated stimulation increased propulsion speed on level ground (1.42 m/s vs 1.37 m/s without stimulation).
- With comparable pushing mechanics:
 - Peak force of 97.92 ± 14.02 N
 - 66.98 ± 5.93% mean fraction effective force
 - >95% of phase transitions were detected accurately by accelerometer (±2SD of those measured by instrumented pushrim).
- Initial data from 4 MWC users suggest a similar implementation is feasible and can be generalized [Table 1].

CONCLUSION

- Simple wireless wrist-worn accelerometers can:
 - Accurately, robustly detect phase transitions of MWC propulsion.
 - Provide effective command signals to control stimulation.
- Modulating trunk and hip activation to coincide with phases of the propulsion cycle can increased speed.

The purpose of this study was to determine a method to accurately detect transitions between contact and recovery phases of MWC propulsion with minimal instrumentation to appropriately modulate trunk stimulation for improved pushing mechanics during challenging conditions.

Support: The research described here was supported by the Department of Veterans Affairs, Rehabilitation Research and Development Service Merit Review 1I01RX001204, and the Advanced Platform Technology Center.